Eﬂl’{— University of
AL BRISTOL

Calling the Bluff in the Diffie-Hellman Key

Exchange

Author Name: Iman Syed
Supervisor: Prof. Tim Dokchitser
Level of Study: M/7

Credit Points: 20CP

Date: May 25, 2020

This work complies with the guidelines given in the project handbook on preparing

and handing in the project report.

Acknowledgement of Sources

For all ideas taken from other sources (books, articles, internet), the source of the ideas

is mentioned in the main text and fully referenced at the end of the report.

All material which is quoted essentially word-for-word from other sources is given in quo-

tation marks and referenced.

Pictures and diagrams copied from the internet or other sources are labelled with a ref-

erence to the web page,book, article etc.

Va

Signed:
Dated: May 25, 2020

Calling the Bluff in the Diffie-Hellman Key Exchange
Iman Syed

Abstract

The Diffie-Hellman (DH) key exchange is the first method of securely generating
and exchanging keys over an insecure channel to come into widespread use. The gen-
erated keys are most often used in procedures known as symmetric-key algorithms
that allow users to transmit information in the form of messages securely between
each other. In particular, Elliptic-Curve Diffie-Hellman (ECDH) key exchanges are
used for key pair generation in blockchain implementations such as Bitcoin and
Ethereum. ECDH has numerous advantages over other key generation protocols,
notably that it generates key pairs of comparably much shorter bit lengths. One
implementation that relates to blockchain relates to sharing bitcoin addresses. A
bitcoin receiver can publish some relevant ECDH information that the bitcoin sender
can use to calculate a shared secret. This shared secret will be the bitcoin address
of the receiver. Then, the receiver can compute the private key that allows access
to that address. There are many other protocols that build from and rely on the
same mathematical tools as DH and ECDH (such as the Elliptic Curve Digital Sig-
nature Algorithm), and thus its security is of great importance. The Standards for
Efficient Cryptography Group (SECG) is an international consortium to develop
commercial standards for efficient and interoperable cryptography based on elliptic
curve cryptography (ECC). ECC is the larger subject of secure communications
with elliptic curves in which the ECDH protocol lies. SECG give recommendations
for parameter sets to be used in cryptographic implementations including DH and
ECDH, and this paper supports the use of such recommendations.

In this paper, we consider the problem of maliciously chosen Diffie-Hellman
parameters that are robust enough to pass given approaches to parameter validation
but in which the Discrete Logarithm Problem (DLP) is relatively easy to solve.
Such a value that passes as a probable prime, but is not in fact prime is known as
a pseudoprime. The security of any DH implementation depends on the hardness
of DLP and we explore a scenario in which a malicious developer could exploit this
knowledge. We will not discuss in much depth the notion of hardness, but instead
we will adopt a roughly computational definition of hardness. We will say that a
problem is hard if there is no existing computer than can solve it in a reasonable
amount of time or within a reasonable number of trials (more specifically, we say the
problem cannot currently be solved in polynomial time). We consider the security
of DH in two settings - finite-field encryption and then more briefly in the context

of elliptic curve encryption.

In the finite-field setting, I will discuss existing methods of malicious DH pa-
rameter generation and explore what characteristics malicious parameters (p, ¢, g)
should have. For these parameters ¢ has many small prime factors (and so seems
to be a sensible choice, for reasons we will go on to discuss), but fools random-base

Miller-Rabin primality tests with a reasonably high chance, and ¢ is the generator

for the cyclic subgroup of order ¢ mod p. This is achieved as an amalgamation of
known methods for generating Carmichael numbers. I provide an extension of these

methods into the safe prime setting.

In the elliptic curve setting I describe how the algorithm of Broker and Steven-
hagen can be used to output an elliptic curve E of order n, over the finite-field [F),.
We intentionally select n to be of the form hg with h being some small co-factor and
¢ having many small prime factors (and so seems to be a sensible choice, for reasons
we will discuss as above) but fools random-base Miller-Rabin primality testing with
significant probability, and £ has a point of order ¢ that should be used as the
generator g. I will explain and exemplify how the attacker can use this to solve the
ECDH problem.

In the finite-field safe prime case, I specify how an implementation would work
but fall short of providing an implementation (but I do give an example implemen-
tation in the finite-field case without the safe prime constraint). In the elliptic curve
setting I provide an implementation originally given in [Alb+18] but similarly fall

short of providing an implementation in the elliptic curve safe prime setting.

The aim in doing so is to show the importance of performing effective DH pa-
rameter validation on cryptographic protocols if such protocols do not rely on stan-
dardised parameter sets with tested and known security, such as the ones given by
SECG. We also briefly discuss the counterargument that attackers will favour the

greater reward of successfully attacking widely used parameter sets.

Overview:

Introduction: A summary of the finite-field DH algorithm, and the motivation

to prevent the use of incorrectly validated DH parameter sets.

Understanding pseudoprimes: A discussion of the Miller-Rabin primality test

and the nature of pseudoprimes, and its relation to Carmichael numbers.

Carmichael numbers: Discussing the Erdos method and the method of Granville
and Pomerance for constructing Carmichael numbers., and how the two can
be combined to produce Carmichael numbers of cryptographically interesting
size. I will describe an adaptation that should help, in addition, to generate

numbers satisying the congruence conditions discussed in the previous section.

The safe prime setting: Using the methods in the previous section to produce
parameter sets in the safe prime setting that have a good chance of passing
validity tests, but for which the Discrete Logarithm Problem is relatively easy

to solve.

The Elliptic Curve setting: Describing and giving an example of how the
algorithm of Broker and Stevenhagen can be used to generate malicious DH

parameters.

Conclusions: Key findings and achievements are summarised and areas for

further investigation are detailed.

Contents

(I__Introduction|

2 When can we solve the DLPY|
2.1 The Pohlig-Hellman Algorithm|

[3 Understanding pseudoprimes|
[3.1 The Miller-Rabin Primality Test|.
[3.2 T'he relationship between nonwitnesses and prime tactorisation|

[4 Producing Carmichael Numbers|

4.2 Selecting values for L)o
4.3 The method of Granville and Pomerancel
[4.4 Choosing M|
[4.5 An example of the modified GP method|

[The Safe-Prime Setting]
(5.1 The primality of 2¢g +1{.
[>.2 Choice of sieving primes| L
[5.3 A summary in the finite-field sate prime setting

6 Elliptic-Curve Diffie Hellman|
[6.1 The algorithm of Broker and Stevenhagen|
[6.2 A summary in the elliptic curve setting|
[6.3 An example in the elliptic curve settingf

[r__Conclusions|

12
12
13
14
15
17

18
18
18
20

21
24
26
26

28

1 Introduction
In the following section, I summarise the Diffie-Hellman (DH) algorithm and discuss

the motivation to prevent the use of incorrectly validated DH parameter sets.

1.1 Motivations

The Diffie-Hellman key exchange [DDH76] is an algorithm for exchanging a shared key
securely through an insecure channel. It allows two parties with no prior knowledge of
each other to output a shared key over the channel, and the keys can go on to be used in
the secure communication of messages (eg. in a symmetric key encryption protocol like the
RSA). It finds application in SSL, SSH, TLS and other Public Key Infrastructure systems.

Albrecht et. al [Alb+18] explore primality testing and its relation to the Diffie-Hellman
Key Exchange. They found several cryptographic libraries for which the chosen primality
testing was susceptible to error. One example they noted was in instances with reliance
on fixed-base Miller-Rabin primality testing, or if falling short of full reliance, instances
where too few applications of the Miller-Rabin test lead to pseudoprimes slipping though
(the DH exchange, what pseudoprimes are, and why this a problem will be described later
on). They use these findings to show that when Diffie-Hellman is applied in the finite-field
case, we can generate particular DH parameter sets of the form (p, ¢, g) in which p = kq+1
for some k, p is prime, ¢ is composite (it can be written as the product of two smaller
positive integers) but ¢ passes a Miller-Rabin primality test with some probability, and the
Discrete Logarithm Problem (DLP) is easy to solve using the Pohlig-Hellman algorithm
in the order ¢ subgroup generated by g. This could be used to compromise the security
of the algorithm, as we will go on to understand. The goal of this paper is to build on
this work, and similar pieces of work, in discouraging DH implementations from allowing
the use of non-standard and poorly vetted parameter sets.

In practise, the implementation of procedures such as DH and ECDH depends on
cryptographic libraries to both implement the protocols, and validate the security of the
parameters. Thus, the security of the procedure in practise depends on the effectiveness
of the parameter validation procedures. If a compromised parameter set was used in some
symmetric key cryptographic protocol, an attacker could determine this key and thereby
break the security of the protocol. OpenSSL is an example of a widely used cryptographic
library that contains such parameter validation functions, amongst other functions. The
parameter set given in [Alb+1§| passed an OpenSSL DH parameter validation function
with significant probability where the function only performed a few iterations of Miller-
Rabin primality testing. [Alb+18| suggest a scenario plausibly occurring when a malicious
developer hard-codes the DH parameter into the relevant protocol that she wishes to

exploit.

Definition 1. Safe prime. A safe prime number is a prime number of the form 2p + 1

for some prime p

[Alb+18] go on to point out that their methods for producing a malicious set of DH
parameters do not work in instances where p is a safe prime number. Using safe primes
in the finite-field setting helps to prevent certain attacks, such as small subgroup attacks
(see |[LLI7]), and appears to make parameter validation easier. OpenSSL’s Diffie-Hellman
validation routine DH_check is one example of a cryptographic library implementation
that insists on the use of safe primes in applications of DH; in particular, it requires DH
parameters (p, ¢, g) for which p = 2¢ + 1, and both p, ¢ are tested for primality.

The motivation behind this paper is to follow on from [Alb+18| in suggesting tech-
niques a potential attacker could exploit find a large, composite g passing the Miller-Rabin
primality test with a significant probability, where p = 2¢ + 1 is prime but for which the
DLP can be efficiently solved.

1.2 The Diffie-Hellman Key Exchange

We will now provide the scheme, discuss why it is correct and finally why it is secure.

Algorithm 1. The Basic DH Algorithm [DDH76].

Alg,q): Bl(g,q):
alz, bv&1z,

A g® B g

Tw |

Kq+ B* Kpg<+ Ab

return K4 return Kp

Where o <~ X means 'z is chosen uniformly at random from set X’ and y & v means Y

is assigned value Y.

We can show correctness as follows:

The fourth equality follows from Z, being an abelian group. In order to examine why

the scheme is secure, we introduce the following definitions:

Definition 2. The Discrete Logarithm Problem (DLP). given a group G and with gener-
ator g and some element y € (g), find x so that g° =y

Definition 3. The Computational Diffie-Hellman Problem (CDHP). Given a group G
with generator g and some elements y; = ¢** and yo = ¢g*2 (but not xy and x5), find

y=9

T1T2

It is important (yet simple) to note that if there is a machine which efficiently solves the
DLP (in this case, we call the DLP ”computationally easy”) then we can also efficiently
solve the CDHP (just use the machine to compute x5 from ys then calculate y = (y1)*?).
There are a few cases in which the DLP is computable in a feasible amount of time,
however there is no known efficient method for computing a solution in general.

The security of DH depends on this fact. A potential eavesdropper only has the values
of g, p, A = g% and B = ¢°, but must compute K = ¢g®. which is precisely a statement of
the CDHP. Since we have established that if the DLP can be solved efficiently then the
CDHP can be solved efficiently, for the remainder of this paper will centre our discussions
around solving the DLP. We will say that the DLP is hard to solve when there does not
exist a machine that can solve it in polynomial time, and easy otherwise.

If an adversary can trick users into using parameters (g, ¢) such that g is a generator of
a small subgroup, the problem become much simpler for the adversary, as he can conduct
a Lim-Lee style subgroup attack [LLI7| or even do a brute force search for the logs a,
b € Z4, and succeed in determining K = K4 = Kp. For this reason, in this paper we will
concentrate instead on the revised DH scheme first given by [Sch91] which ensures that
the subgroup used is of sufficiently large prime order. The revised algorithm works by
ensuring that the order of a chosen cyclic subgroup, p — 1, has some large prime divisor q.
There will then be a cyclic subgroup of order ¢ mod p, and we choose g to be a generator
of this subgroup. If it is chosen to be sufficiently large (in practice this means at least
160 bits [Alb+18]) a brute-force search will be unfeasible. Then, a user who is given a
DH parameter set can easily check whether they are being fooled into using a non-secure

small subgroup.

Algorithm 2. The DH Scheme against small subgroup attacks [Sch91].

Alp,g.9) : B(p,g.q) :
A+ g°modp B <+ ¢g®modp

If 1 < B <pand B?mod p =1, we have failed, and we terminate. Otherwise,

Ky B*modp Kpg <+ A’ modp

return K4 return Kp

We can show correctness as follows:

K4 = B*modp
= (¢")* mod p
= ¢"* mod p
= (9")" mod p
= A’ mod p
= Kp

The checks in before returning K 4 and Kpg protect from two things. We know that if the

public keys B = 0 or B = 1 are used then the channel is totally insecure (since, if define

Ka = Kp := Z we will always have either Z =0 or Z = 1, so we make sure B > 1. The

same problem arises in the case where B = kp or B = 1+ kp for some non-zero integer k,

so we also check that B < p. Further if we check that BY mod p = 1 we can be sure that

g? mod p = 1. Thus we will meet the requirement that ¢ is a generator for the subgroup

of order ¢ mod p. Finally, we have B? = (¢°)? = (¢9)® = 1° = 1 mod p.

2 When can we solve the DLP?
A key purpose of this paper is to detail how one can determine DH and ECDH pseu-

doprime DH parameters for which the DLP is easy to solve. We will focus on finding
DH parameters to which the Pohlig-Hellman algorithm (PH) can be applied to the cor-
responding subgroup, which efficiently solves the DLP in subgroups with smooth order
(that is, the prime factorisation contains only small primes). There are certainly other
avenues to be explored for potential attacks on the DLP but for the sake of continuity
from [Alb+18| we focus on the PH algorithm. The original Pohlig-Hellman algorithm is
given in [PH78| but in what follows we draw from an explanation given by [Mus06| as it
is simpler and easier to follow. The algorithm takes time O(B'/?) to complete where B
is a bound on the largest prime factor of ¢ [GMP19|. For example, if ¢ only has 3 prime
factors then ¢ can have a maximum of 384 bits if we want the algorithm to apply at most
264 effort.

2.1 The Pohlig-Hellman Algorithm
The Pohlig-Hellman algorithm provides a method for solving the DLP in the scenario

where the group with generator ¢ is a finite abelian group whose order is a smooth integer
q. The algorithm operates by computing a logarithm modulo each prime power in the
group order, and applying the Chinese remainder theorem (to combine these to a loga-

rithm in the full group).

Algorithm 3. The Pohlig-Hellman Algorithm for groups of prime-power order [PHT7S;
Mus06).

Suppose that p is a prime number and « a generator for the cyclic group F,. Assume
that 8 € F is such that 3 = a”. We want to solve x = log,, 3. Assume further that

k
p—1=]]q"
=1

where each ¢; is are prime numbers in the factorization of p — 1. The general idea is to

solve a system of congruences modulo each ¢; , and then combine the congruences, using

the Chinese Remainder Theorem (CRT), giving a solution to the original congruence.
Begin by fixing choices ¢, r and we will work mod ¢". Recall that the DLP is to search

for a solution to x = log,, 5. The following trick is key to the algorithm. Write x as follows:
r=x0+ g+ + 23 + ... +x,_1¢"" modg for0<a; <qg—1 (1)

By considering = in this form we can successively compute the z; 's. We can then take

this equation for x, multiply by the constant ’%1 and obtain

6

T (1%) =2 <p%1> +x(p—1)+z29(p—1) + x3q2(p —D+...+ x"—lqr_2<p -1

or simply

T (%) = <p%1> + (p— 1)m, for some m € Z
(Where the above congruences hold true modulo ¢”). The next step is to work with the

generator o and our solution 3 all modulo p. Raising [to the exponent of p%l, we get:
6”7‘1 = (Oéx)pT_l = axo(pT_l)+(p—1)m = axo(pT_l> = (QPTTIYCO mod p

It is now possible to run through a list of stored values in an attempt to find a match for
p—1

xo. The stored values are obtained by setting ¢ = ¢« mod p and computing ¢ mod p
where 0 < 7 < ¢— 1. The CRT implies that one and only one value will be congruent to
g 7. When a match is found we are able to solve for xg, namely j = xg. Once we have
solved for xg we can perform a similar trick to solve for x; this time we multiply by

the quantity pq;; to obtain

1 1 1
T (p 5) = 79 (p 5 > + 1 (p_) + (p — 1)my, for some m; € Z. (2)
q q

q

Unfortunately we cannot immediately raise [to this exponent; we first need to shift it

somehow to compensate for the extra power of ¢ that we have on the left hand side of
. To do this, we set 8; = - a~ . Thus we have that

p—1

A R
= (Oﬂ(ml—i-mq—&-m))% = a%(x1+xzq+w3q2+---)
— a(ﬂ)x1+(p71)m1 = %)zl mod D

and again we can look in our table of precomputed values and determine x;. This is then
repeated until all the x; ’s are known and for every prime ¢; appearing in the factorization
of p — 1. A final application of the CRT applied with each ¢; gives us the final value of x

allowing us to solve the DLP in this case.

There are two issues that we should be aware of for this attack. The first is that we
are assuming that p — 1 can be factored efficiently and that it contains only small primes
in its factorization. The second issue lies in the precomputation of the ¢/ values. since
the p — 1 contains only small primes, the values of the ¢; ’s are small and hence so are
the values of the ¢/ ’s. since these values are small, they can be efficiently computed, and
require relatively small storage for each list. The expected running time for this algorithm
is O (Zle T (logQ(p —1)+ \/@)> , or equivalently O(\/Eg) where ¢} is the largest prime
factor of p — 1. To avoid this attack in its entirety, one can choose the value of p carefully

so that p — 1 has a large prime factor.

3 Understanding pseudoprimes
We now go on to discuss the nature of pseudoprimes, how they should be determined

and give some important results that we will eventually use to manipulate them.

3.1 The Miller-Rabin Primality Test

Clearly, we can only hope to fool a primality test in the way we are hoping for if the
test is not a deterministic one. There exists a deterministic primality-proving algorithm
known as the AKS primality test [AKS04] which can be conducted in polynomial time.
However, it is not implemented by existing cryptographic libraries as although it runs
faster than any other algorithm for problems that are sufficiently large, in reality ”suffi-
ciently large” problems are so big that the algorithm is never used in practice. We will
focus on the Miller-Rabin primality test [Rab80|, which is the most widely implemented
probabilistic primality test and is implemented, for example, in the function DH_check,
which is OpenSSL’s Diffie-Hellman parameter validation procedure. The test works by
taking a particular system of congruences and translates them over to the setting of com-
posite numbers to see if these new congruences fail. However, as we will go on to discuss,
there are values amongst a type of number known as the Carmichael numbers that have

good chances of fooling this test.

Theorem 1. [Rab80]. Let n be prime and 1 < a <n — 1. Factor out the largest power
of 2 from n — 1, and we denote this n — 1 = 2°d where e > 1 and k is odd. Then

a®=1modn or a*? = —1 mod n for some i € {0,...,e — 1}. (3)

Proof. Let n be an odd integer such that n > 1.

n—1

We now show that the polynomial 2! — 1 = 22’ — 1 can be repeatedly factorised as

often as there continues to be powers of 2 in the exponent:
x22d 1= (xQE—ld)Q 1
= (- DT+,
= (@ =)@)@+).

= (@ = D+ D)@ + 1) (@* + 1) (¥4 1)

Suppose n is prime and 1 < a < n—1. Then by Fermat’s little theorem a" ! —1 = 0 mod n.
Thus:

(a’=1) (a’+1) (a* +1) (a*+1) - <a2c_1d + 1) = 0 mod n

So we must have that at least one of these factors is 0 mod n, and the result follows.
]

We will use this result to justify our next definition.

Definition 4. Miller-Rabin Witness. Let n > 1 be odd. Write n — 1 = 2°d with d odd (as
in the proof of the last theorem) and picka € {1,...,n—1} . a is known as a Miller-Rabin

witness for n if both of the congruences in (3) are false. In particular:
both a # 1 modn and a**# —1 mod n for all i € {0,...,e — 1}

Definition 5. Miller-Rabin Nonwitness. Let n > 1 be odd. Write n — 1 = 2°d with d
odd (as in the proof of the last theorem) and pick a € {1,...,n — 1} . a is known as a

Miller-Rabin nonwitness for n if one of the congruences in[3 is false. In particular:
either a® # 1 mod n or a2 # —1 mod n for some i €{0,...,e—1}

The term 'witness’ here means some number that proves n is composite. An odd prime
must have no Miller-Rabin non-witness, so if n has a Miller-Rabin witness it is certainly
composite and thus is certainly not prime. However, the converse is not strictly true; if n
has no witnesses, it is only likely to be prime because, as we will go on to see, there are

certain pseudoprimes that return no witnesses.

Theorem 2. [Rab80]. Let n > 1 be an odd composite.
Over 75% of integers from 2 to n — 2 are Miller-Rabin witnessses for n. Equivalently, less

than 25% of integers from 2 to n — 2 are Miller-Rabin nonwitnesses.

We now formulate the Miller-Rabin test as follows, to decide whether an odd number

n > 1 is prime. Steps 3 and 5 are a direct consequence of Theorems [1| and 2| respectively.
1. Select some ¢t > 1 to be the total number of trials for the test.
2. Set a < [2,n — 2]

3. If a is a Miller-Rabin witness for n, terminate the test. We determine with certainty

that n is composite.

4. If a is not a Miller-Rabin witness forn then return to 2 and repeat with a different

value of a + [2,n — 2]

5. If the test has not terminated after ¢ trials we conclude that n is prime with prob-

ability 1 — 1/4" or greater

We now proceed to examine the relationship between a composite n and its non-witnesses.
Let us denote the number of non-witnesses a composite n posseses as S(n). In order to
get a composite that fools the Miller-Rabin test for any random base a then it is clearly
desirable for S(n) to be as large as possible. On the other hand, four our purposes we
need to find an n for which it is possible to efficiently solve the DLP in a subgroup of
order n, so we attempt to find an n which is relatively smooth, in order to apply the

Pohlig-Hellman algorithm. We can calculate S(n) exactly via the following theorem:

Theorem 3. [Mon80]. Suppose n is an odd composite. Suppose n = 2°d + 1 for some
odd d. Further, suppose that n has prime factorisation n = [[*, p/* where each prime p;
can be expressed as n = 2%d; + 1 with each d; odd. Then:

omin(e;)m _

S(n) = (W + 1) 1:‘1 ged (d, d;) (4)

The following result is a bound on the number of non-witnesses S(n).

Theorem 4. [Mon80] Monier-Rabin Bound. Let n # 9 be an odd composite. Then:

p(n)
S(n) < 4

where ¢ is the Euler’s totient function: ¢(n) is the number of positive integers that are

relatively prime to n.

We also know from |[Mon80] that the Monier-Rabin bound reaches equality for com-
posites of the form n = (2k + 1)(4k + 1) with each multiple prime, and k odd.

Definition 6. Carmichael numbers. Let n be an odd composite number. Then n is a

Carmichael number if a®! =1 mod n for all a co-prime to n.

Another case of equality is in the instance where n is a Carmichael number can be
written as a prime factorisation of exactly three primes n = ppop3 and where each factor

p; is congruent to 3 mod 4.

Theorem 5. Ss given by |Alb+1§|. Korselt’s Criterion. Let n be an odd composite.

Then n is a Carmichael number if and only iff
Its prime factorisation does not have any repeated factors (ie. n is square free).

AND for all prime divisors p of n , we have p —1 mod n — 1.

10

m Crn S(Ch)
3 7-19-67 ©(Cy) /4
4 7-19-67-199 ¢ (Cy) /8
5 7-11-19-103-9419 ¢ (C,,) /16
6 7-11-31-47-163-223 ¢ (C,,) /32
7 19-23-31-67-71-199-271 ¢ (C,,) /64
8 11-31-43-47-71-139-239-271 ¢ (C,,) /128
9 19-31-43-67-71-103-239-307- 631 ¢ (C,,) /256
10 7-11-19-31-47-79-139-163-271-2347 (Cy,) /512

Table 1: |[Pin06]. The smallest number C), with m prime factors that meets the upper
bound of ¢ (C,,) /2™ on S (C,,) .

3.2 The relationship between nonwitnesses and prime factori-

sation
We begin with a key result following on from Theorem [4]

Theorem 6. |[GMP19|. Factor bound on S(n). Let n be an odd composite with prime
factorisation n = [\, p¥'. Write n = 2°d + 1 where d is odd and p; = 2°d; + 1 where
each d; is odd. Then S(n) < 2% where ¢(-) denotes Euler’s function, with equality if

ogm—1)

and only if n is square-free.

Notice that the case of Theorem [6] in which m = 2 is precisely the statement of the
Monier-Rabin bound. The next theorem will show that for m > 3, the bound given
in Theorem [0 is reached if and only if n is a Carmichael number whose prime factors are

all congruent to 3 mod 4.

Theorem 7. [Mon80]. Let n be a Charmichael number with m > 3 prime factors, each

congruent to 3 mod 4. Then S(n) = fn(ﬁ)l- Conversely, if n has m > 3 prime factors and

S(n) = ;’,,E’i)l, then n is a Carmichael number whose prime factors are all congruent to

3 mod 4.

Table 1 provides, for each 3 < m < 10, the least number with m prime factors C,,
such that (), reaches the factor bound of Theorem [6| Theorem [7] implies that all such
values of (), are Carmichael numbers with prime factors each congruent to 3 mod 4. We
note that this table is simply for the purpose of exemplifiying the factor bound, but they

cannot be put into cryptographic use as they are much too small.

11

4 Producing Carmichael Numbers

The results that were given in the last section give us sufficient reason to search for
appropriately sized Carmichael numbers, with each factor congruent to 3 mod 4. To recap,
we wish to do so in order to maximise the number of nonwitnesses to any such number
n and so increase the chance that n is accepted by the Miller-Rabin test as a probable
prime. The next section will discuss two existing methods for determining such numbers:
The Erdés method and the method of Granville and Pomerance.

4.1 The Erdos Method.

[Erd56] provide one method of constructing Carmichael numbers with a large number
of small prime factors. In the following section, we will begin with the notation L for
an initial highly composite number (one with many prime factors). We will also retain

notation for the following set: P(L) = {p: p prime,p— 1| L,pt L}.

Lemma 1. [Erd56]. If for some subset {p1,pa,--- ,pm} C P(L), we have pips- - Py =

1 mod L, then n = pips - - pm is a Carmichael number.

Proof. . By construction, p; — 1 | L. Clearly n is an odd composite. Since n = 1 mod L
is equivalent to the claim L | n — 1; it follows that p; — 1 | n — 1. Also, n is evidently

square-free (all p; are distinct). The result follows by satisfaction of Korselt’s criterion
(Theorem [5). O

Now we are in a position to present what is a relatively simple and efficient approach
to generating Carmichael numbers with a chosen number of prime factors m, and for

reasonably large values of L as given by [Erd56].

1. Select an appropriate composite L (In the next subsection we consider how to choose

this value).

2. Generate P(L). We do this by considering each factor a — 1 of L and applying the
Miller-Rabin primality test on a:

(a) If a is not prime, it does not belong to P(L) so we discard it and move on to

the next value.

(b) If @ turns out to be prime, it belongs to P(L).

3. After detemining P(L), examine all product combinations of m distinct elements of
P(L). Call one such product n = p; -+ py,. Then if n = 1 mod L, n is a Carmichael

number.

Table 2, as given by [GMP19] gives examples of Carmichael numbers that can be produced

by the Erdos method, where Lp.s is the value less than or equal to a given Lyyung such

12

Lbound Lbest ’P (LbeSt)’

220 810810 =2-3*-5-7-11-13 39
221 2088450 =2-3%-5%-7-13-17 20
222 4054050 = 2-3*-5%.7-11-13 o8
223 7657650 =2-3%-52-7-11-13-17 65
224 13783770 =2-3*-5-7-11-13-17 73
22 22972950 =2-3%-5%-7-11-13-17 89

226 53603550 = 2-3%-5%-7*-11-13-17 93

Table 2: For a given Lpounq (column 1), the value Lyey (column 2) gives the value of
L < Lypouna resulting in the largest set of primes P (L), subject to the additional restriction
that p = 3 mod 4 for all p € P(L)

that the set P(Lpes) is of the largest possible size subject to the additional restriction
that p = 3 mod 4 for all p € P(L). |P (Lpest)| represents the number of prime factors of

an outputted Carmichael number n.

4.2 Selecting values for L
Here follow the work of [GMP19] in discusing how we should selected the initial com-
posite L for our purposes. It is fairly clear that we should choose L to be even,
otherwise the integers a for which a — 1 | L will all be even. Secondly, to ensure
all primes p € P(L) satisfy p = 3 mod 4 we should set L = 2 mod 4. This is because
then each factor f of L must also be 2 mod 4, and so p = f + 1 = 3 mod 4 as required.
Thirdly, in order to produce a Carmichael number n with m prime factors we need to

find some product n = pips - - - p, such that p1ps---p, = 1 mod L. We can see that the

(|anL)| >

Thus, to maximise the possible values returned by this method and thus maximise the
chance of finding a Carmichael number within them we should find L such that | P(L) |
is as large as possible. Such an L would have many factors f — 1 and so many possible
candidates f that are considered in step 2 of the Erdos method, and will be added to

P(L) if prime. Thus, we should choose L to have as many factors as possible. In this

number of possible such products is

argument we have assumed that the primality of the different values of f will be in some

some independent from the factors f — 1 of L.
It is important to remember that for our purposes, any method we use to generate

Carmichael numbers must produce numbers of cryptographically relevant size. However,

it turns out in practice that it is difficult to use the Erdos method to do so. To illustrate,

13

suppose we wanted to construct a 1024-bit Carmichael number n with, say, m = 8 prime
factors, each of 128 bits. This would mean using an L much larger than 2'?8. This would

make it very long to conduct a search to find a product p;---ps =1 mod L.

4.3 The method of Granville and Pomerance

In this section we will consider another method of generating Carmichael numbers,
which is attributed to Granville and Pomerance |GP01]. The method takes a small
Carmichael with some known number of factors m, and outputs a larger Carmichael

number also with m factors.

Theorem 8. |GP01] Granville and Pomerance. Let n = pips---p, be a Carmichael
Number. Let L = lem(p; — 1) and let M be any integer with M = 1mod L. Set
¢ =1+ M(p;—1). Then N = ¢;---¢q,, is a Carmichael number whenever each ¢; is

prime.

However, this theorem alone is incomplete for our purposes, since as mentioned, we
only desire Carmichael numbers whose prime factors are congruent to 3 mod 4. We rem-

edy this concern with the following lemma; using the same notation as Theorem [8
Lemma 2. [Alb+18] If p; =3 mod 4, then ¢; = 3 mod 4 for alli € {1,--- ,m}

Proof. Choose some i € {1,--- ,m}i. Since L = lem(p; — 1) and p; — 1 is always an even
number, it follows that L is an even number. But since M = 1(mod L) we must have that
M is odd; write M = 2s + 1. Moreover, since p; = 3 mod 4, we have p; — 1 = 2d; with d;
odd; write d; = 2t;+1. Then ¢; = 1+ M (p;—1) = 1+(2s+1)(4t;4+2) = 3+4(2st+i+s+t;).
The result follows. O]

We can see that the the two crucial choices of variable in this method are the choice
of M, and the input Carmichael number n.

It is fairly clear from the Granville and Pomerance theorem that the initial choice n
affects the properties of the outputted Carmichael number, for example by determining
the number of prime factors m of N. The result of Lemma [2|is also determined by n.

The choice of M affects the output in a couple of ways. Firstly, it is necessary to choose
an M so that all the ¢; = 1 + M (p; — 1) are prime (by the definition of a Carmichael
number). If we use the heuristic assumption that the values the even g; are as likely to be
prime as random choices of odd ¢; of the same size, the probability that a random choice
of M yields m primes is approximately (2/in(B))™ where B is a bound on the ¢; . So this
probability will be very small for cryptographically sized N with even moderately sized
m. So we should not hope to obtain Carmichael numbers of suitable cryptographic size
by making guesses. Instead, we now try to develop methods for determining M that will

increase the likelihood that all the ¢; are prime.

14

4.4 Choosing M

As we can infer from Theorem [§], there is only one limitation on the choice of the value
of M That is, M = 1(modL), where L = lem(p; — 1). By being particular in our choice
of M we should be able to choose such a value, and also ensure that the resulting values
¢i = 1+ M (p; — 1) has a greater likelihood of being prime than if M was randomly chosen.

In pursuing this task we first return to the work of [GMP19] who found use in tech-
niques from [JPV00| for generating primes on low-end processors. First, we consider
numbers of the form p = kH + ¢ for a free parameter k where H is the product of the
first A distinct primes, , H = H?Zl s;, and where ¢ is co-prime to H.

We can be sure that p is divisible by each s; since p = § = 0 mod s;, To generate
different candidates for p, we can choose different values for k, and then test for primal-
ity. An important technique is known as ’sieving’ a positive integer n by some primes
T1, %2, -, T, Where z; # n for all 7. By this, we mean that we are checking if n is divis-
ible by each of the x, and if it is not then we say it has passed sieving by each x; thus
improving the likelihood that n is prime. The process by which each generated number p
is tested by trial divisions by each of the small primes diving H is an example of sieving.
By this process we can say that the numbers generated have a greater probability of being
prime than a randomly generated counterpart, since by construction they are guaranteed
to pass sieving by the primes sq, sg,-- - , Sp.

[GMP19] present an adaption of this method such that the resulting ¢; = 1+ M (p; —1)
are guaranteed to be indivisible by many small primes, as follows.

Since M =1 mod L, we can write M = kL + 1, where k is the new free parameter in

the construction method. Then
¢ —1=M(p; = 1) = (kL +1)(pi = 1) = kLp; + pi = kL — 1.
Which is equivalent to
¢ = kLp; + pi — kL = kL(p; — 1) + pi.

We can observe now that many small primes will divide L since lem(p;—1,p;—1) = L # j.
If we use the Erdos method to generate the starting Carmichael number n, we will end
up with even more small primes that divide L since we will start with a smooth number
with all of the p; — 1 divide.

We cannot have that any of the primes diving L can be a value of p;, again since
lem(p; — 1,p; — 1) = L for i # j. Let p be a prime dividing L. We know that for each

such prime p

¢; = pi # 0 mod p.

15

Thus, we can be sure that every ¢; does not have any of the prime divisors of L as a
factor: so any sieving on ¢; for every such divisor will pass the sieving process. .

Despite this, there are still other primes which are neither equal to any of the p;, nor
that divide L, which must be considered. Let s be such a prime. Suppose we choose some
k such that s|k.

Since we have M = kL + 1 for some free parameter k, we get:
¢ = kL(p; — 1) +p; = p; # 0 mod s

Thus, we should choose k so that it is divisible by some product of the primes s;, such
s; # p; for all ¢, 7, and s; does not equal any of the divisors of L for any j. This ensures
we can pass sieving by all of the s;. We could certainly includes additional constraints for
k to ensure that the generated ¢; are of a desired bit-size and so that there are ultimately
enough choices for M, but we will not discuss them here. Let us write k = £'[]; s; for
some collection of primes s; that obey the above constraints; we now choose £’ instead of
k as the free parameter in the construction.

The effectiveness of sieving will depend on the collection of two sources of primes: the
prime factors present in L, and the set {si,---,s;}. Let us call the total collection of
primes from these wo sources si,...,s,. Then the fraction of candidates for each ¢; that

are successfully removed by the sieving (since they are not prime) is given as follows:

h 1
0_1_}1(1_5) (5)

Thus, the prime values of ¢; will be within 1 — ¢ of the initial set of candidates, so that
a random selection amongst these values that were not removed by sieving is 1/(1 — o)
times more likely to result in a prime than a random selection amongst the initial set.
Notice that the prime s = 3 is very powerful in sieving, contributing 2/3 as a factor
in the product H?Zl (1 - %) that determines . This construction is an improvement
on the success probability of each trial from the modified Granville-Pomerance construc-
tion (each with some choice difference choice of free parameter k' from (2/In(B))™ to
(2/(1 = o)in(B))™.

In this section we have explained how the modified method of Granville and Pomerance
given by |[GMP19| shows that it is possible to generate large Carmichael numbers n with

the following properties:
1. n is of a cryptographically interesting size

2. n has a selectable number of small prime factors (and so can fulfil some smoothness

bound to be a candidate for a subgroup order to which the Pohlig-Hellman algorithm

16

can be applied)

3. n achieves the upper bound in Theorem 4 for the number of its Miller-Rabin non-
witnesses and therefore maximises the probability of being a Miller-Rabin pseudo-

prime

4.5 An example of the modified GP method
Using a C implementation of the modified Granville-Pomerance construction, with the
Carmichael number Cg of Table 1 as the starting value n and L = 53603550, [GMP19]

found that choosing
k = 7891867750444302551322686487
produces the 8 -factor, 1024 -bit Carmichael number N = ¢, - - - gg where:

q1 = 7614578295977916492449157442324119319

g2 = 9306706806195231268548970207285034723

qs = 17767349357281805149048034032089611743
g4 = 100681646357930229177938859515174466539
g5 = 362961565441614019473409838084116354159
gs = 3926584207959278937939615521091804194983
g7 = 4850486374537932805690113290760464005567

gs = 102606442538302424735752396535317507810051

Here, ¢, the largest prime factor, has 137 bits.

With B of 128 bits and m = 8 (so that the target NV has 1024 bits), they estimated the
standard Granville-Pomerance construction to have a success rate for producing an appro-
priate Carmichael number of (2/In(B))™ & 27438 per trial, so that the expected number
of trials would be about 2438, With their modified version of the Granville-Pomerance
construction each of the ¢; passed sieving by the primes 3,5,7,11,13,17 that divide L. This
gave them o = 0.6393 and therefore a reduction in the expected number of trials by a
factor of about 1/(1 —)™ =~ 28 to roughly 23? trials.

17

5 The Safe-Prime Setting
5.1 The primality of 2¢ + 1

In the previous section, we showed that in our pursuit of finding malicious DH param-
eters in the safe prime setting (and any finite-field setting) we need to construct a number
q so that g passes Miller-Rabin primality testing, but has sufficiently many small prime
factors so that the adversary can use the Pohlig-Hellman algorithm to solve the DLP the
subgroup generated by ¢. The final parameter set will be of the form (p, ¢, g) where p is
prime and g € Z, generates a group of prime order ¢, where ¢ | p— 1. The randomly gen-
erated values of a and b given by Algorithm [1| are then generated by this latter subgroup.
In the safe prime setting, we have the additional requirement that p = 2¢q + 1.

[Ble05] use the results given in the last section to construct a large Carmichael num-
ber ¢ with m prime factors f;, and for which f; = 3 mod 4, and ¢ will pass random-base
Miller-Rabin primality testing with the highest possible probability of all other Carmichael
numbers with m prime factors. We build on this work with an additional step in the safe
prime setting, which is to then test 2¢ + 1 for primality and accept the value if it passes.
If 2¢ + 1 is indeed prime then the DLP in the subgroup of order ¢ can be solved with
O(mB'/?) effort where B is an upper bound on the prime factors of g.

There are two reasons why this approach will fail in practice. Firstly, standard density
estimates for primes tell us that the probability that 2¢ + 1 is prime by chance is approxi-
mately 1/1n ¢ and thus that it is very unlikely [VS13]. Secondly, for certain constructions
there is reason to believe that 2¢ + 1 will never be prime. In what follows I will describe

further and attempt to resolve these issues.

5.2 Choice of sieving primes

First, we will evaluate the problem of sieving for 2¢ + 1 where the prime ¢ is produced
by the Method of Granville and Pomerance:

Assume we have some starting Carmichael number n = p; - - - p,,. Suppose we apply
the method of Granville and Pomerance: Set ¢; = M(p; — 1) + 1 where M = 1+ kL and
L = lem(p; — 1). Assume k is chosen such that all the resulting ¢; are all prime. Write
q = q - qpn for the outputted Carmichael number. I now present the most interesting

result to be used in this paper, which although simple turns out to be remarkably useful.

Lemma 3. [GMP19]. Fiz the notation above. Then for all primes s that divide kL,
we have 2¢ +1 = 2n + 1 mod s.

Proof. We know that ¢; = M(p; — 1) +1 = (1 +kL)(p; — 1) + 1. Thus, if s is prime with

s mod kL we must have ¢; = p; mod s. The result follows. O

18

Lemma 3| shows that we can the only information we need to determine whether 2¢+ 1
will be divisible by each of the primes s or not is the factorisation of the small starting
Carmichael number n . Since we require 2q + 1 to be prime, we can discard any n for
which 2n+1 = 0 mod s for any of the primes s dividing L or k. We can be fairly confident
that there are many such primes s, since L is usually has a large number of prime factors,
coming about as the least common multiple of the p; — 1. We can be even more sure of

this when the Erdos method is used to construct n as we will see in what follows.

The prime 3 willhave a large impact as part of the process of sieving used for the
method of Granville and Pomerance. As mentioned in the previous sections, contributes
a factor 2/3 to the product term H?:l (1 — S—i) in the computation of the value of o.
This is sufficient reason that we would want to preserve s; = 3 as a factor of KL in the
construction. However, from Lemma |3| we know that if we want 2¢ + 1 to be prime, we
must have 2n + 1 # 0 mod 3. This implies that either n = 0 mod 3 or n = 2 mod 3. In

turn, we now consider each of these two cases:

1. Suppose n = 0 mod 3:

Since 3 divides n we can set p; = 3. In our approach, we obtain the initial n =
p1- - Pm using the Erdds method, in which case p; = 3 belongs to the set P(Lx)
(where Lx denotes the input number used in the Erdos method; L+ may be different
from L = lem(p; — 1) in the method of Granville and Pomerance, even though they
may turn out to be equal). From the definition P(Lx), we deduce that 31 Lx .

We know that if p € P(Lx) then p = f 4+ 1 for some f € Lx . Thus p = 2 mod 3
for each p € P(L*)\{3}. We also know that p = 3 mod 4 by choice of Lx , so we
know that p = 11 mod 12 for every p € P(Lx)\{3}. Thus, if n is generated by the
Erdos method and 3 is a factor of n, then the remaining primes, aside from 3, that

are factors of n must all be 11 mod 12.

2. Suppose now n = 2 mod 3:
Claim: p; = 2 mod 3 for all primes p; such that p; is a factor of n.

Proof: Suppose, to the contrary, that p; = 1 mod 3 for some i. This implies 3 | p;—1.
ByTheorem , we infer that 3 | n — 1, and thus n = 1 mod 3. Since we assumed
that n = 2 mod 3 we have a clear contradiction.

Also, n = [, pi = 2™ mod 3, which implies that n = 2 mod 3 if and only if m is
odd. As a result, m, must be odd in the case where n = 2 mod 3.

So in the instance where n = 2 mod 3, is it necessary to use a starting Carmichael
number with m odd in which p; = 2 mod 3 for each prime factor p;. Perhaps these

conditions may seem too stringent. But, in the discussion of the Erdos method we

have already shown how to execute these conditions: we simply need to ensure that

19

3 does not divide Lx*, where Lx is the value corresponding to the notation used in the
Erdos construction. The consequence is that there is only one value of p € P(Lx)
(the exception being p = 3) that will meet this condition. For the final step in the
Erdos method use the set P(Lx)\{3}.

5.3 A summary in the finite-field safe prime setting

The cumulation of the previous sections have shown that it is possible to produce a

particular Carmichael number n so that if the method of Granville and Pomerance is used

to produce ¢ from starting value n, then 2¢ + 1 # 0 mod s; for many small primes s;.
We know that ¢ will attain the Monier-Rabin bound on S(g), that is, ¢ will attain its

maximum number of Miller-Rabin non-witnesses for ¢, as desired. I now summarise this

procedure as follows:

1.

Carry out the first step of the Erdés method with a value of Lx such that 2 | Lx |
44 Lx , 31 L+ . We do this so that the set 3 € P(Lx), and other primes in P(L)
are all 11 mod 1.

. Remove 3 from P(Lx) and carry out the second step of the Erdos method with

some choice of odd m to find a subset of P(Lx) consisting of primes py - - - p,, such
that n = p; -+ pn = 1 mod L. From the previous discussion concerning the prime
3, we know that n will be a Carmichael number with m prime factors that are each
11 mod 12. Thus, they will also be both 3 mod 4 and 2 mod 3.

Set L = lem(p;—1). By Lemma[3]if n is a Carmichael number then 2n+1 # 0 mod s
for each prime factor s of L. Check this is satisfied, but if this fails, go back to the

first step and begin again to generate a different value of n.

. Use n to denote the same value in the method of Granville of Pomerance to find

candidates for ¢ (such that all g; are all prime). We know that 3 does not divide L in
the Granville-Pomerance method, but we are seeking a value such that 3 | kL since
sieving by 3 will be highly effective. Thus, we should set k to be some sufficiently
large multiple of 3 in this step.

. Lastly, we run the Miller-Rabin primality test on 2¢ + 1. We can be sure that

2¢+ 1 # 0mod 3 and 2g + 1 # 0 mod s for each prime divisor s of L as a result
of the choices made in the second step. Thus, 2¢ + 1 will certainly not be divisible
by 3 and other certain small primes. If p = 2¢q + 1 passes then we have found a
Carmichael number ¢ that passes the Miller-Rabin primality test with probability
approximately 1/4 but for which solving the DLP in the subgroup of order ¢ mod p

is relatively easy via the Pohlig-Hellman algorithm.

I fall short of providing an implementation for this strategy in the paper.

20

6 Elliptic-Curve Diffie Hellman

Definition 7. Elliptic Curve. An elliptic curve E, over a finite-field F,, is defined by the
following equation: y* = x + ax + b where a,b € F,. The curve also needs to be non-
singular (i.e it has no cusps, self-intersections or isolated points). A curve is non-singular
if, and only if, the discriminant A is non-zero, where: A = —16(4a® + 270?)

Elliptic curve cryptography is an industrial standard cryptosystem. Its popularity is
due to an increase in speed during implementation, the use of less memory, and smaller
key sizes. For example, a key size of 4096 bits for RSA gives the same level of security
as 313 bits in an elliptic curve system [Mus06]. Its security lies in the difficulty of solving
the Elliptic Curve Discrete Log Problem (ECDLP), which will be described shortly. The
ECDLP is known to be at least as hard as the DLP. If the elliptic curve is chosen carefully,
the ECDLP is believed to be infeasible to solve, even with today’s computational power.
On the other hand, this obstacle has not deterred people in their attempts to crack elliptic
curve cryptosystems. A multitude of attacks have been developed, tested, and analyzed
when attacking the ECDLP. For the most, part the ECDLP has withstood all attempts;
however, in some special cases the problem is actually quite easy. It is these simple cases
that must be avoided when building such a cryptosystem. One example of such a weakness
will be the subject of this section.

An Elliptic Curve Diffie-Hellman (ECDH) scheme can operate in different ways, but in
this section we will look at the method in which an explicit definition of an elliptic curve
is given. We will denote an ECDH parameter set by (p, E, P, q, h), where p is the order
of the finite-field F,,, £ is the equation of the chosen elliptic curve, P is the generator for
a subgroup of order ¢ on the curve (so that #E(F, = (P)) and h is the cofactor of this
subgroup. The ”cofactor” is h = % |E (F,)|. The significance of the cofactor is that for
every point r on the curve the point hr is either the "point at infinity”, or it has order p.
This means that if we take a point on the curve and multiply it by the cofactor then we

necessarily return a point in the subgroup of prime order p.
Algorithm 4. [Rab05]. Elliptic Curve Diffie-Hellman.

A(p, E,P.q.h): B(p,E, P,q.h):
QA<—CZA'P QB<—dB'P

Te |8

(a,y4) < hda-Qp (vB,yp) < hdp - Qa
return x4 return rp

If h > 1, we know that there are points on E with small order, we’ll call such a point H
(there won’t always be a point of order h, however to make this argument slightly simpler,

we’'ll assume there is). We can show correctness as follows:

(a,y4) =da-Qp
=hds-(dp- P+ H)
=hdy-dg-P+hdy-H
=hdy-dg- P
=hdg-ds- P
=hdp-(da-P+ H)
= hdp - Qa
= (vB,YB)

Where the fourth equality follows from the fact that the point H is of order h.

In practise, the cofactor h = 1 is often used. One might ask why we should parametrise
the cofactor at all, as the correctness result remains the same regardless. The reason is
that it helps avoid a small potential data leakage if Bob does not correctly implement
the protocol. Then, suppose an attacker didn’t give Alice the value d4 - P, he gave her
the value ds - P + H. Alice would then compute da(dgP + H) = dadgP + daH =
dadpP + (da mod h)H. As Bob knows the value dadpP (he does his half of the second
phase honestly), he can compute Alice’s shared secret with h different alternatives, and
so recover d4 mod h.

By internally multiplying by A in the second phase, this doesn’t happen; we have seen
that correctness remains independent of what d4 mod A is.

Now, if this is the only place that Alice uses d4 (that is, if she is using ECDH correctly),
this leakage doesn’t matter at all - Bob learns the shared secret as required, and since
d4 mod h is not used by Alice elsewhere he can’t leverage that into any knowledge of any
other secret. However, if Alice reuses her (da,d4 - P) pair for other exchanges, the leakage
is relevant.

Alice and Bob exchange their public keys Q4 and @), as they do not share the
randomly generated values d4 and dp so a potential attacker only has access to these
values and the values of the parameters. Thus, the following problem must be solved in

order to determine the shared key.

Definition 8. Elliptic Curve Discrete Logarithm Problem (ECDLP). Given points P,Q €
E(F,) to find an integer l, if it exists, such that Q) = [P.

Given the ECDLP K, = aKp, the finite-field Pohlig-Hellman algorithm can be in-
terpreted in the elliptic context, and similarly used recursively by computing discrete

logarithms in the prime order subgroups. Each of these smaller subproblems can then be

22

solved using methods, such the Pollard’s rho algorithm, but these subtools will not be
discussed in this paper.
The Pohlig-Hellman algorithm, as given in [Mus06], to solve the ECDLP works as

follows:

Algorithm 5. [Mus06]. The Pohlig-Hellman algorithm for ECDLP.

Input. An elliptic curve E of order n with prime factorisation n = [[;_, pj*, and two
elements @), P € E such that P has order n and Q € (P). Notice that n has r distinct
prime factors.

Output. The unique integer [€ {0,...,n — 1} so that @ = [P

1. Foreachi e {1,---,r}:
i Compute I; = [mod p;’

2. Solve the simultaneous congruence [= (modp;’) Vi € {1,...,r} for [using the
Extended Euclidean Algorithm. The Chinese Remainder Theorem guarantees there

exists a unique solution [€ {0,...,n — 1}
3. Return [

Let’s take a closer look at how this works. For the moment fix a prime say pﬁl We

compute [y as follows. We write the base-p; representation of [;

! mod p{17fora’i € [07p1 - 1] (6)

L = ag+ap + agp? + ...+ ael_lpf“
We begin by computing a list of small values for each prime divisor p; of n. Set T; =
{[j] ([pﬂ} P) 0<j<p; — 1} . We will look for a match with these points and values
that we will determine below. When we find a match we have solved for a given coefficient

in the base- p; expansion of [. We can now compute the following,

n

[p%] Q= L?_l] ([ao +aipr+...+ a61_1p§1—1] P)

ﬁ} P+ ([ar + azpr + . ..]) [n]P = [ag] [zﬂ P

~lal|

D1

Thus we can now look in our list 77, find the matching point in the list and read off
the coefficient ay.

To solve for the next coefficient, a;, we have to change our starting point which can
be easily done. since we have already solved for ay we can use it and set @y = Q — [ag] P

then perform the above calculation using (), instead, and shifting by the proper quantity

23

to isolate for a;. If we multiply (@ by z%’ after ap has been removed this will then give us
1

5ot s 2] (2]

and again we look in our list 7 for a matching solution. This then gives us a result for a;.
We continue in this way until we have solved for each coefficient in the base- p; expansion
of l;. We then continue and solve for each [; in the same manner. When this is done we
solve the system of congruences in step 2 of Algorithm [5| and recover the original value of
[in our original problem @ = [k]P, thus solving the ECDLP.

Just as an attacker can seek to find malicious parameter sets in the context of finite-
field DH, the same approach is possible in the ECDH context. In the following section,
we will describe and explain a sketch of one possible attack. Firstly, we will show that the
algorithm of Broker and Stevenhagen can be used to construct a composite number ¢ that
would be declared ‘probably prime’ by the Miller-Rabin Primality Test, but for which the
ECDLP is relatively easy to solve via Algorithm [5] Then we will use this knowledge and

construct a curve of order n = hq and of suitable size.

6.1 The algorithm of Broker and Stevenhagen
In this section we will describe how we can use the algorithm of Broker and Steven-
hagen to determine a curve over a prime p of some particular order n. We will begin by

stating certain theorems that the algorithm exploits, which are all quoted from |[BS05] via
[GMP19).

Theorem 9. An elliptic curve E over F, has #E(F,) = p+ 1 —t points for some ¢ where
| t]< 2\/p-

Theorem 10. The endomorphism ring of E contains Z[+/t?> — 4p|, which is a subring of
the imaginary quadratic field K = Q(y/t2 — 4p).

Theorem 11. If E is an elliptic curve over a number field whose endomorphism ring is
the ring of integers of K, then the reduction modulo p of E is an elliptic curve over F,
and, by taking a suitable isomorphism, we may ensure that the reduced curve has p+1—t¢

points.

The strategy of the algorithm is roughly to determine some elliptic curve whose en-
domorphism ring is K = Q(M), then find its reduction modulo p according to
Theorem [I1] The algorithm is fairly complicated and I will not seek to give a full expo-
sition here, but instead I will describe the first part of the algorithm.

Suppose we begin with an integer n chosen to be the number of points on the final
desired elliptic curve. According to the Algorithm, we would first like to construct a
prime p and an integer ¢ such that p+1 —¢ = n and such that Q(M) has some

24

small discriminant D (a result of Theorem [10|and Theorem |11|- we will omit the proof of
this). In what follows, the algorithm will attempt to solve this problem. Recall that that

algorithm takes in an integer n and outputs an elliptic curve consisting of n points.

Let D < 0 be some discriminant of some imaginary quadratic field F'. We will try to
find point(s) (p,t) such that t> — 4p = (f?)D for some f € N.

By Theorem [9] we know that we must ensure p+1—¢t =nandsop=n+t—1. If
t? —4p = (f?)D then

(t—2)—(f)D=t*—(fA)D—4t+4=4(p—t+1) = 4n.

This result allows us to conduct the first part of algorithm of Broker and Stevenhagen

used to construct a curve with n = hy - - - hy, points:
1. Choose some D such that

e (D/h;) > 0 for all h; | n.
e D < 0 so that there are only finitely many solutions

e cither D = 0 mod 4 or D = 1 mod 4 (since the algorithm requires that ged(1, D)
1 and ged(D,4n) = 1),

e | D |< Dyouna for some bound
2. Determine all solutions x¢ € Z/4nZ to the equation zy> = D mod 4n

3. For each solution, setting zy = w use Cornacchia’s algorithm |[BS05] to solve the

equation w? — 2D = 4n for w
4. Check whether n + (w +2) — 1 =n+w + 1 is a probable prime.
5. If so, output (p,t) where t* — 4p = (f?)D
6. Repeat 1 to 4 until a value for step 5 is obtained

The rest of the algorithm is more complex and requires an extended set of mathematical
tools. Roughly speaking, we use the chosen discriminant D in conjunction with a tool
known as Hilbert class polynomial whose roots can be used to return an elliptic curve
with n = p+ 1 —¢. To find the whole algorithm and its proof, refer to [BS05|.

One may sensibly speculate that the algorithm will completely fail for a given value
of n since we restrict to | D |< Dpouna. But for the purposes of ECDH this should not be
a problem since there are many possible values of n we can work with.

Now let us consider the outcomes for a few different values of n. n = 4q for the prime

order ¢ is often used in practise (eg. the group order of Edwards and Montgomery curves

25

is divisible by 4). If D is odd then any solution (w, f) to w? — f?D = 4n means that w
will be odd, and thus ¢ will be odd.

If n is odd then p = n+ w + 1 will be odd, as desired. However, if n is even and D is
chosen to be odd, p will be even and so obviously not prime. Thus it is necessary to insist
on an odd discriminant D in the case where n is odd. This restriction is unnecessary in
the case where n is even (since w and ¢ will be even and so p = n + w + 1 will be odd),

so we can also take D to be even.

6.2 A summary in the elliptic curve setting
1. As a malicious developer, use the methods developed in Section 4| to generate a suf-
ficiently large Carmichael number ¢ which is congruent to 3 mod 4. By design, this

will pass the Miller-Rabin primality test with a relatively high success probability.

2. Apply the algorithm of Broker and Stevenhagen, or otherwise, to obtain an elliptic
curve E over F, of desired order n (eg n = 4q for applications that use Montgomery
and Edwards curves) such that n is a product of many small primes. Use the
parameter set (p, E, P,q,h) (where h is the cofactor of F and P is a generator for
E) in the ECDH implementation that you wish to eventually attack.

3. Once an implementation has been established and a pair of users have exchanged a
secret key x, use the Pohlig-Hellman algorithm, or otherwise, to solve (with notation
as in Algorithm the ECDLP Q4 = d4- P for the curve E with generator P. Then

(xa,ya) = (B,y) = hds - Qp, and the shared secret is x4 = y4 = x.

6.3 An example in the elliptic curve setting

[GMP19] implemented the algorithm of Broker and Stevenhagen [BS05|, and ran it
with ¢ that are 256 -bit Carmichael numbers with 3 and 4 prime factors, all congruent to 3
mod 4. These were generated using methods described in Section[d] By design, these values
of ¢ pass random-base Miller-Rabin primality testing with probability 1/4 and 1/8 per
iteration, respectively. Using an early abort approach for each ¢ they estimate a success
probability of roughly 1/4 for each ¢ considered. When successful, the computations took
under a minute on a personal device.

Set ¢ = q1¢2q3 where:

g1 = 12096932041680954958693771
g2 = 36290796125042864876081311
g3 = 133066252458490504545631471

They found ¢ to be a Carmichael number with 3 prime factors that are all congruent to
3 mod 4, so that ¢ passes random-base Miller-Rabin primality testing with probability 1/4
per iteration. Using the algorithm of Broker and Stevenhagen, they obtained the elliptic

26

curve F (F,) defined by y* = 2°45, where = 584170554761513436280134435700062590071846222494
656635947464036346655953 such that #FE (F,) = ¢ and p has 256 bits. They found that
every point P on this curve satisfies [¢|P = O, the point at infinity, so any point can be
used as a generator (although it is possible that not all such points will have order ¢, if
q is accepted by the MR test as being prime then this will not hinder anything). The
Pohlig-Hellman algorithm can be used to solve the ECDLP on this curve using about

3 - 2425 group operations, since the largest prime factor. of ¢ has 85 bits.

27

7 Conclusions

The discussions of this essay were intended to show that the use of poorly established
parameter sets in DH and ECDH can lead to malicious attacks. We should instead use well
vetted and tested parameter sets. This message is not so important in the case of ECDH,
not necessarily as a result of security concerns of the difficulty of parameter validation,
but simply because parameter generation in this case is non-trivial to begin with. We
can be more sure of secure implementation if we stick to a limited set of well-understood
curves. Even then, [Ber+15] demonstrate that it is very difficult to rule out that even
well-established curves don’t have hidden security flaws unless the generation process
for the curve is thoroughly explained, with demonstrably little room for manipulation.
If a library insists, for some reason, on allowing the use of bespoke parameters, then
implementations should employ robust primality testing as part of parameter validation,
using, for example, many rounds of Miller-Rabin tests, or using the Baillie-PSW primality
test for which there are no known pseudoprimes, cf. |[GMP19].

The counterargument to this is that the potential reward of solving many logarithms
if an attacker uses the best-known algorithms for solving discrete logarithms, outweighs
the cost of large-precomputations that these algorithms require. Despite the fact that
even our best algorithms are very slow, the reward outweighs the cost when there are far
more use cases to be exploited with common sets of DH parameters. The Logjam attack
on 512-bit DH described by |[Adr+15] is an example of a common set of DH parameters
where this argument certainly applied.

The work of this paper puts greater weight in favour of the first argument, suggesting
that we should stick to limited sets of well-understood DH parameters in both the finite-

field and elliptic curve cases.

28

References

[Alb+18]

[DDH76]

[LL97]

[Sch91]

[PH7S]

[Mus06]
[GMP19]

[AKS04]

[Rab80]

[Mon80]

[Pin06]

[Erd56]

[GPO1]

[JPV00]

Martin R. Albrecht, Jake Massimo, et al. “Prime and prejudice: Primality testing
under adversarial conditions”. In: Proceedings of the ACM Conference on Com-
puter and Communications Security. Association for Computing Machinery, 2018,
pp. 281-298.

Whitfield Diffie, Whitfield Diffie, and Martin E. Hellman. “New Directions in Cryp-
tography”. In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644—
654.

Chae Hoon Lim and Pil Joong Lee. “A key recovery attack on discrete log-based
schemes using a prime order subgroup”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol. 1294. Springer Verlag, 1997, pp. 249-263.

C. P. Schnorr. “Efficient signature generation by smart cards”. In: Journal of Cryp-
tology 4.3 (1991), pp. 161-174.

Stephen C. Pohlig and Martin E. Hellman. “An Improved Algorithm for Computing
Logarithms over GF(p) and Its Cryptographic Significance”. In: IEEE Transactions
on Information Theory 24.1 (1978), pp. 106-110.

Matthew Musson. Attacking the Elliptic Curve Discrete Logarithm Problem. 2006.
Steven Galbraith, Jake Massimo, and Kenneth G. Paterson. “Safety in Numbers:
On the Need for Robust Diffie-Hellman Parameter Validation”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Vol. 11443 LNCS. Springer Verlag, 2019, pp. 379—
407.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in P”. In: Annals
of Mathematics 160.2 (2004), pp. 781-793.

Michael 0 Rabin. Probabilistic Algorithm for Testing Primality. Tech. rep. 1980,
pp. 128-138.

Louis Monier. “Evaluation and comparison of two efficient probabilistic primality
testing algorithms”. In: Theoretical Computer Science 12.1 (1980), pp. 97-108.
Richard G. E. Pinch. “The Carmichael numbers up to $10°{18}$”. In: (2006). arXiv:
0604376 [math].

Paul Erdos. “On pseudoprimes and Carmichael numbers”. In: Publ. Math Debrecen
4 (1956), pp. 201-206.

Andrew Granville and Carl Pomerance. TWO CONTRADICTORY CONJECTURES
CONCERNING CARMICHAFEL NUMBERS. Tech. rep. 2001.

Marc Joye, Pascal Paillier, and Serge Vaudenay. “Efficient Generation of Prime
Numbers”. In: Springer, Berlin, Heidelberg, 2000, pp. 340-354.

https://arxiv.org/abs/0604376

[Ble05]

[VS13]

[Rab05]

[BSO5]

[Ber+15]

[Adr+15]

Daniel Bleichenbacher. “Breaking a cryptographic protocol with pseudoprimes”. In:
Lecture Notes in Computer Science. Vol. 3386. Springer, Berlin, Heidelberg, 2005,
pp. 9-15.

Joachim Von Zur Gathen and Igor E. Shparlinski. “Generating safe primes”. In:
Journal of Mathematical Cryptology 7.4 (2013), pp. 333-365.

Kefah Rabah. “Implementation of Elliptic Curve Diffie-Hellman and EC Encryption
Schemes”. In: Information Technology Journal 4.2 (2005), pp. 132-139.

Reinier Broker and Peter Stevenhagen. “Constructing elliptic curves in almost poly-
nomial time”. In: (2005). arXiv: 05611729 [math].

Daniel J. Bernstein, Tung Chou, et al. “How to manipulate curve standards: A
white paper for the black hat”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics). Vol. 9497. Springer Verlag, 2015, pp. 109-139.

David Adrian, Karthikeyan Bhargavan, et al. “Imperfect forward secrecy: How diffie-
hellman fails in practice”. In: Proceedings of the ACM Conference on Computer and
Communications Security. Vol. 2015-Octob. New York, New York, USA: Association
for Computing Machinery, 2015, pp. 5-17.

https://arxiv.org/abs/0511729

	Introduction
	Motivations
	The Diffie-Hellman Key Exchange

	When can we solve the DLP?
	The Pohlig-Hellman Algorithm

	Understanding pseudoprimes
	The Miller-Rabin Primality Test
	The relationship between nonwitnesses and prime factorisation

	Producing Carmichael Numbers
	The Erdös Method.
	Selecting values for L
	The method of Granville and Pomerance
	Choosing M
	An example of the modified GP method

	The Safe-Prime Setting
	The primality of 2q+1
	Choice of sieving primes
	A summary in the finite-field safe prime setting

	Elliptic-Curve Diffie Hellman
	The algorithm of Bröker and Stevenhagen
	A summary in the elliptic curve setting
	An example in the elliptic curve setting

	Conclusions

